Algebra II	Homework 1116	Name:
Dr. Paul L. Bailey	Tuesday, November 16, 2021	

Due Tuesday, November 16, 2021. Write all complex numbers and polynomials in standard form. Do not copy. Do not write anything you do not understand.

Definition 1. The *end behavior* of a polynomial f is one of the following:

- $\swarrow \nearrow$ if f is positive on the far left and positive on the far right (or +|+)
- \checkmark if f is negative on the far left and positive on the far right (or -|+)
- \swarrow if f is positive on the far left and negative on the far right (or +|-)
- \checkmark if f is negative on the far left and negative on the far right (or -|-)

Proposition 1. Let $f(x) = a_n x^n + \cdots + a_1 x + a_0$ be a general polynomial of degree n (in standard form). The end behavior of f can be determined by the degree n and the leading coefficient a_n , using this chart.

	n even	$n \ odd$
$a_n > 0$	K_7	\checkmark
$a_n < 0$	\swarrow	$\overline{\ }$

Problem 1. Determine the end behavior of each of the following polynomials.

(a)
$$x^2 - 25$$
 (d) $(x-1)(x-3)^2(x-5)^3$

(b)
$$8x - 3x^2$$
 (e) $x^5 - x^6$

(c)
$$x^3 - 7x + 5$$
 (f) $2x$

Problem 2. Solve the equation $6x^2 + 13x - 5 = 0$. Simplify the solutions. Write the solution set.

Problem 3. Consider the polynomial $f(x) = x^3 - 8x^2 + 21x - 18$. Find the multiplicity the following numbers as zeros of f.

Number	1	2	3	4	5	6
Multiplicity						

Problem 4. Let f be the unique monic polynomial with real coefficient such that f(3+5i) = 0. Write f(x) in standard form.

Problem 5. Let f(x) be the unique monic polynomial of minimal degree with zeros -3, 5, and 7. Write f(x) in standard form.

Remark 1. Recall that $(x - r_1)(x - r_2) = x^2 - (r_1 + r_2)x + r_1r_2$.

Problem 6. Let $f(x) = (x - r_1)(x - r_2)(x - r_3)$. Multiply out this polynomial to find its coefficients. That is: suppose we write the same f as $f(x) = ax^3 + bx^2 + cx + d$.

Find a, b, c, and d in terms of r_1, r_2 , and r_3 .

Do not skip this problem because it is "too hard". It is not "too" hard. Just do it; you will learn something.